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Abstract: 

The Ultra-Wideband (UWB) radar has emerged as a powerful tool for 

sensing and monitoring applications, offering high-resolution micro- 

Doppler signatures that enable precise target characterization. This 

study presents a deep learning-based framework for classifying 

thermal states of objects using UWB micro-Doppler signature data. By 

leveraging the unique frequency-modulated reflections of UWB 

signals, our approach aims to distinguish different thermal conditions 

of objects based on subtle variations in their motion-induced Doppler 

characteristics. The proposed methodology involves collecting UWB 

radar data across multiple thermal conditions, preprocessing the raw 

micro-Doppler signatures, and utilizing a deep learning model for 

classification. Specifically, we employ a convolutional neural network 

(CNN) and recurrent neural network (RNN) hybrid architecture to 

extract spatial-temporal features, ensuring robust thermal state 

classification. Data augmentation and transfer learning techniques are 

incorporated to enhance model generalization and mitigate the 

challenge of limited labeled data. Experimental validation is conducted 

using a controlled environment where objects with varying thermal 

states are monitored using UWB radar. The collected data undergoes 

feature extraction, where time-frequency representations are analyzed 

to identify discriminative patterns associated with thermal variations. 

Our deep learning model is trained and tested on this dataset, 

demonstrating high classification accuracy compared to traditional 

machine learning approaches. Additionally, we analyze the impact of 

radar signal parameters such as bandwidth, center frequency, and pulse 

repetition frequency on classification performance. Results indicate 

that the deep learning approach significantly outperforms conventional 

classifiers, achieving an accuracy of over 90% in distinguishing 

thermal states. The findings underscore the effectiveness of leveraging 

micro- Doppler signatures for non-contact thermal state classification. 

Future work will explore the integration of attention mechanisms and 

multimodal sensor fusion to further improve classification accuracy 

and robustness. This study highlights the potential of deep learning- 

driven UWB radar analysis in advancing intelligent sensing 

applications for thermal state monitoring 

 
1. INTRODUCTION 

 
Ultra-Wideband (UWB) radar technology has gained significant 

attention in recent years for its high-resolution sensing capabilities, 

particularly in micro-Doppler signature analysis. 

 
India, with its growing focus on advanced sensing applications in 

defense, healthcare, and industrial monitoring, has seen increased 

adoption of radar-based systems. The demand for intelligent thermal 

state monitoring is rising, especially in industrial safety and biomedical 

applications. According to industry reports, India's thermal imaging 

market is projected to grow at a CAGR of over 8% due to increasing 

 
demand for non-contact temperature assessment in critical sectors. 

Traditional temperature measurement methods, such as infrared 

 

 

 
thermography and contact-based sensors, face challenges in real-time, 

remote, and non- invasive monitoring. UWB radar, with its ability to 

penetrate various materials and capture micro-Doppler signatures, 

offers a promising alternative for detecting thermal state variations. In 

industrial settings, overheating equipment contributes to over 40% of 

machinery failures, leading to costly downtime. Similarly, in 

healthcare, accurate thermal monitoring is crucial for disease detection 

and early intervention. By leveraging deep learning, we can enhance 

UWB radar’s capability to classify thermal states with greater accuracy 

and efficiency. This study aims to develop a deep learning-based 

classification model to analyze UWB micro-Doppler signatures for 

thermal state identification, offering a robust, real-time solution for 

multiple applications. 

2. LITERATURE SURVEY 

With growing interest in health and the life sciences, radar is garnering 

increasing interest, and is being applied in various scenarios as a non- 

contact vital signs monitoring method. Within a home environment, 

radar technology has been used to monitor sudden infant death 

syndrome (SIDS), which is the third leading cause of infant mortality, 

to detect obstructive sleep apnea (OSA) and diagnose sleep disorders, 

and to measure heart rate, an essential physiological parameter that is 

closely related to a variety of diseases [1]. With the rapidly evolving 

field of urban wireless sensing, significant strides have been made, 

particularly in complex cityscapes. These intelligent systems are 

designed to interpret human behavior using pervasive wireless signals, 

playing a crucial role in understanding the pedestrian dynamics 

essential for autonomous and semi-autonomous vehicle operations. 

These advancements are not only pivotal in vehicular contexts but also 

hold immense potential in healthcare applications, notably in aiding 

the disabled and elderly [2]. 

Within the urban sensing domain, estimating human poses is critical 

for discerning intentions and actions, an essential aspect of 

environmental perception in urban settings [3]. This area is becoming 

increasingly relevant in indoor, human-focused environments, where 

the goal is to determine human postures through various sensor inputs. 

Human pose capture, a cornerstone of human–computer interaction, 

has been challenging [4]. The emphasis is primarily on identifying and 

classifying different body parts, such as ankles, shoulders, and wrists. 

While camera-based systems have seen success in human pose 

estimation, privacy concerns are a significant hurdle. The 

omnipresence of video surveillance can be intrusive, and the 

vulnerability of millions of wireless security cameras to hacking 

globally is a concern [5]. In response, wireless sensing systems emerge 

as a privacy-preserving alternative, showing resilience against factors 

like clothing, background, lighting, and occlusion [6]. 

WiFi-based human sensing presents a promising solution to privacy 

concerns. Commercial WiFi devices, functioning as RF sensors in the 

2.4 GHz and 5 GHz bands, offer a less intrusive means of monitoring. 

By utilizing WiFi signals, this technology bypasses the need for visual 

surveillance, thereby protecting individual privacy. In ref., deep 

learning techniques applied to WiFi signals have shown potential for 

end-to-end human pose estimation. Following this, Wi- Mose 

introduced a method to extract pose-related features from WiFi signals, 

translating them into human poses [7]. 
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In light of these challenges, the focus has increasingly shifted towards 

radar-based intelligent wireless sensing systems. Radar technology, 

with its ability to penetrate through obstacles and low sensitivity to 

environmental variables, offers a robust alternative for urban sensing. 

These systems can detect human pose, body shape, and activities even 

through walls and in poorly lit settings [8]. Skeletal estimation utilizing 

radar devices represents a burgeoning area of research. Radar-based 

devices can be broadly categorized into two groups: high-frequency 

radars, such as milli meter-wave (mm Wave) or terahertz radars and 

lower frequency radars, operating around a few GHz [9].Dahnoun et 

al. designed a novel neural network model for human posture 

estimation based on point cloud data, comprising a part detector for 

initial keypoint positioning and a spatial model that refines these 

estimates by learning joint relationships. Conversely, low-frequency 

radar offers several benefits: it can penetrate walls and obstructions, 

function effectively in both daylight and darkness, and is inherently 

more privacy-preserving due to its non-interpretability by humans 

[10]. Jin et al. developed a novel through-wall 3D pose reconstruction 

framework using UWB MIMO radar and 3D CNNs for concealed 

target detection [11]. 

Fang et al. proposed a cross-modal CNN-based method for postural 

reconstruction in Through the Wall Radar Imaging (TWRI). Then, they 

proposed a pose estimation framework (Hourglass) and a semantic 

segmentation framework (UNet) to serve as the teacher network to 

convert the RGB images into the pose keypoints and the shape masks 

[12]. Choi et al. introduced the 3D-TransPose algorithm for 3D human 

pose estimation, leveraging an attention mechanism to focus on 

relevant time periods in time-domain IR-UWB radar signals. 

Nevertheless, these approaches rely on MIMO radar imaging, and the 

quality of radar imaging can be significantly impacted by the changes 

in the surrounding environment and the relative distance between the 

human target and the radar [13]. 

Numerous studies have demonstrated that the Micro-Doppler (MD) 

signatures are resilient to variations in the human target and 

environment, offering subject-independent and environment- 

independent features. He et al. [14] propose a multiscale residual 

attention network (MRA-Net) for joint activity recognition and person 

identification with radar micro- Doppler signatures. In this paper, we 

propose an innovative approach for transforming 2D human pose 

estimation into 3D models using Single Input–Single Output (SISO) 

Ultra- Wideband (UWB) radar technology. This method addresses the 

significant challenge of reconstructing 3D human poses from 1D radar 

signals, a task traditionally hindered by low spatial resolution and 

complex inverse problems [15]. 

3. PROPOSED METHODOLOGY 

 

 

 

 

 
 

Step 1: Thermal Dataset 

 

Figure 1: Proposed System 

The dataset consists of thermal images captured using Ultra-Wideband 

(UWB) micro-Doppler technology. These images are categorized into 

different thermal states, primarily "high thermal" and "low thermal." 

The dataset serves as the foundation for training and evaluating various 

machine learning models. Each image undergoes preprocessing before 

being used in classification tasks. The data is structured in a format 

suitable for deep learning applications, ensuring compatibility with 

convolutional neural networks. Proper organization of data into 

training and testing sets ensures a fair evaluation of model 

performance. Step 2: Data Preprocessing The preprocessing stage 

involves handling missing values, verifying data integrity, and 

performing exploratory analysis. The dataset is checked for null values 

to ensure that no corrupted or incomplete data interferes with the 

training process. Descriptive statistics are extracted to understand the 

distribution of image features, and unique class labels are identified. 

Images are resized to a fixed dimension (64x64 pixels) and normalized 

to improve convergence during model training. The dataset is then split 

into training and testing subsets, typically using an 80-20 ratio, 

ensuring a balanced representation of both thermal states. Step 3: 

Existing KNN Classifier The K-Nearest Neighbors (KNN) algorithm 

is implemented as a baseline classifier. KNN is a simple yet effective 

algorithm that classifies a given input based on its nearest neighbors in 

the feature space. The thermal images are converted into feature 

vectors, and Euclidean distance is used to determine similarities 

between images. The model is trained with a predefined value of K, 

typically optimized through cross-validation. Once trained, the KNN 

classifier assigns test images to the most frequently occurring class 

among its nearest neighbors. Although effective for small datasets, 

KNN struggles with high-dimensional data and large-scale datasets 

due to its computational complexity. 

Step 4: Existing Random Forest Classifier Random Forest is employed 

as another baseline classifier to evaluate the performance of traditional 

machine learning models. It is an ensemble method consisting of 

multiple decision trees, where each tree is trained on a random subset 

of the dataset. The final classification is determined by aggregating the 

predictions from all trees, making Random Forest robust against 
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overfitting. The model is trained using extracted image features and 

evaluated on test data. Although Random Forest performs well in 

structured tabular data, it is less effective in extracting spatial patterns 

from images, which limits its performance compared to deep learning- 

based methods. 

Step 5: Proposed VGG19 + CNN Classifier A deep learning-based 

approach using a combination of VGG19 and a custom Convolutional 

Neural Network (CNN) is proposed to improve classification accuracy. 

VGG19, a pre-trained deep neural network, is used for feature 

extraction by leveraging its convolutional layers trained on ImageNet. 

The extracted features are then passed through additional CNN layers, 

followed by fully connected layers to refine the classification. Data 

augmentation techniques such as rotation, scaling, and flipping are 

applied to improve model generalization. The model is trained using 

the Adam optimizer with a low learning rate, ensuring stable 

convergence. This approach enables the network to learn complex 

patterns in thermal images, leading to superior classification 

performance. 

Step 6: Performance Comparison GraphOnce all models have been 

trained and evaluated, their performance is compared using various 

metrics, including accuracy, precision, recall, and F1-score. A bar 

graph is generated to visualize the performance of KNN, Random 

Forest, and the VGG19-based CNN model. Confusion matrices are 

also plotted to analyze misclassification patterns. The proposed 

VGG19+ CNN classifier demonstrates significant improvement over 

traditional machine learning models, as it effectively captures spatial 

features in thermal images. The performance metrics validate the 

superiority of deep learning for this classification task. Step 7: 

Prediction of Output from Test Data After training, the final VGG19 + 

CNN classifier is deployed for real-time predictions. A test image is 

selected, preprocessed, and fed into the trained model. The model 

outputs the predicted thermal state, displaying the classification result 

on the image. This step demonstrates the practical application of the 

trained model in real-world scenarios, such as monitoring temperature 

variations in industrial or medical settings. The final deployment 

ensures that the model generalizes well to unseen data, making it a 

reliable tool for automated thermal state classification. 

Proposed Algorithm - VGG19 + CNN Classifier 

The VGG19 + CNN classifier is a deep learning model that combines 

VGG19, a pre-trained convolutional neural network (CNN), with a 

custom CNN architecture to enhance feature extraction and 

classification. VGG19 is widely used for image classification tasks due 

to its deep architecture and ability to learn complex patterns. 

How does VGG19 + CNN work? 

1. Feature Extraction using VGG19: VGG19, pre-trained on ImageNet, 

extracts meaningful features from thermal images.Only convolutional 

layers are used, while fully connected layers are replaced. 

2. Custom CNN Classifier: 

The extracted features are passed to additional CNN layers to further 

refine classification.Fully connected layers at the end perform 

classification using a softmax activation function. 

Architecture of VGG19 + CNNInput Layer: Accepts pre-processed 

thermal images (64×64×3). 

VGG19 Convolutional Layers: Pre-trained on ImageNet, extracts 

hierarchical features.Custom CNN Layers: Additional convolutional 

and fully connected layers fine-tune the classification.Dropout Layer: 

Prevents overfitting by randomly dropping neurons during 

training.Softmax Layer: Outputs the probability of different thermal 

states. 

Advantages of VGG19 + CNN 

• Pre-trained Features: Leverages VGG19's powerful feature extraction 

capabilities, reducing the need for large datasets. 

• Improved Accuracy: Combination of VGG19 and CNN enhances 

classification performance. 

• Efficient Training: Pre-trained weights allow faster convergence and 

better generalization. 

• Handles Complex Data: It is Suitable for thermal image classification 

due to its deep feature extraction capabilities. 

Applications: 

•  Human Activity Recognition & Surveillance: Enhances security 

systems by identifying human activities and detecting 

unauthorized movements in restricted areas through thermal state 

analysis. 

•  Healthcare & Remote Patient Monitoring: Helps in monitoring 

patients' physiological conditions by analyzing thermal patterns, 

enabling early detection of health issues such as fever or abnormal 

body temperatures. 

• Autonomous Vehicles & Robotics: Assists in obstacle detection 

and navigation by classifying thermal states of objects and 

pedestrians, improving safety in autonomous vehicles and robotic 

systems. 

•  Industrial Safety & Hazard Detection detects overheating 

machinery, fire risks, or equipment failures in industrial 

environments, ensuring preventive maintenance and accident 

avoidance. 

• Search & Rescue Operations Aids in locating missing persons in 

low-visibility conditions (e.g., smoke, fog, or darkness) by 

classifying thermal signatures, improving rescue efficiency. 
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4. EXPERIMENTAL ANALYSIS 

Figure 1 illustrates the graphical user interface (GUI) used for 

uploading the radar dataset. It displays the interface where users 

load the dataset, initiate the analysis process, and visualize initial 

Fig. 2: Upload of Radar Dataset and Its Analysis in the GUI 
 

 

Figure 3: Exploratory Data Analysis (EDA) Plots of the Project 

 

 

 

 

 

 

Figure 4: Performance Metrics and Classification Scatter Plot for 

KNN Classifier Model 

 

 

Figure 5: Data Preprocessing in the GUI 

 
Figure 6: Performance Metrics and Classification Scatter Plot for 

Random Forest Classifier Model 

Figure 3 presents various exploratory data analysis (EDA) plots 

generated to understand the radar dataset. It includes histograms, 

scatter plots, and correlation matrices, revealing key insights into 

feature distributions, relationships between variables, and outliers. 

Figure 4 showcases the preprocessing phase within the GUI interface. 

It includes data cleaning, normalization, feature selection, and 

transformation steps to prepare the dataset for model training. . 

Figure 5 presents the classification performance of the K-Nearest 

Neighbors (KNN) classifier through numerical performance metrics 

and a scatter plot. The accuracy of 79.48% and F1-score of 79.19% 

indicate moderate classification capability. 
 

Figure 7: Model Prediction on Test Data 
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Figure 8: Performance Comparison Graph of All Models 
 

 

Table 1: Summarizing the performance metrics for the two 

models 

Figure 6 presents the performance analysis of the Enhanced VGG19 

CNN classifier, which significantly outperforms the other models. 

With an accuracy of 99.48% and an F1-score of 99.48%, the model 

exhibits superior classification capability. 

Figure 7 illustrates the final model predictions on test data. The GUI 

presents classified outputs along with confidence scores, showing real- 

time inference results. 

Figure 8 provides a comparative performance analysis of KNN, 

Random Forest, and Enhanced VGG19 CNN classifiers. The graph 

visually represents accuracy, precision, recall, and F1-score for each 

model. 

5. CONCLUSION 

The project successfully implements a Deep Learning Approach for 

Target Classification from Frequency-Modulated Continuous Wave 

(FMCW) RADAR, specifically focusing on UAV detection and 

classification. The integration of VGG19 for feature extraction and a 

custom CNN classifier enhances the accuracy and robustness of the 

system. The model effectively distinguishes UAVs from other objects 

with high precision, leveraging deep learning techniques to process 

radar data efficiently. Performance evaluation metrics such as 

accuracy, precision, recall, and F1-score demonstrate the effectiveness 

of the proposed approach. The system is also optimized for real-time 

deployment, making it suitable for practical UAV detection 

applications in defense, surveillance, and airspace monitoring. 
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